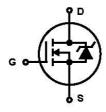


This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Formerly developmental type TA17434.

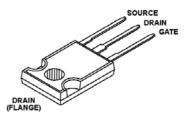
Features

- 16A, 400V
- r_{DS(ON)}=0.300 Ω
- Single Pulse Avalanche Energy Rated
- SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance
- Related Literature
- -TB334 "Guidelines for Soldering Surface Mount Components


to PC Boards"

Ordering information

PART NUMBER	PACKAGE	BRAND
IRFP350	TO-247	IRFP350


NOTE: When ordering, include the entire part number.

Symbol

Packaging

JEDEC STYLE TO-247 TOP VIEW

Absolute Maximum Ratings Tc=25 , Unless Otherwise Specified

	IRFP350	UNITS
Drain to Source Voltage (Note 1)V _{DS}	400	V
Drain to Gate Voltage (R _{GS} =20KΩ)(Note 1)V _{DGR}	400	V
Continuous Drain CurrentI _D	16	А
Tc=100I _D	10	А
Pulsed Drain Current (Note3)I _{DM}	64	А
Gate to Source VoltageV _{GS}	±20	V
Maximum Power DissipationPD	180	W
Linear Derating Factor	1.44	W/
Single Pulse Avalanche Energy Rating (Note 4)EAS	700	mJ
Operating and Storage TemperatureT _J , T _{STG}	-55 to 150	
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10sTL	300	
Package Body for 10s, See Techbrief 334Tpkg	260	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

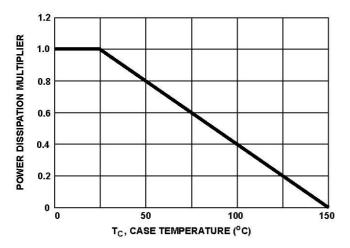
NOTE:

1. TJ=25 to 125 .

Electrical Specifications Tc=25 , Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	V_{GS} =0V, I _D =250µA(Figure 10)	400	-	-	V
Gate to Threshold Voltage	V _{GS(TH)}	$V_{GS}=V_{DS}$, $I_{D}=250\mu A$	2.0	-	4.0	V
Zero-Gate Voltage Drain Current	I _{DSS}	V _{DS} =Rated BV _{DSS} , V _{GS} =0V	-	-	25	μA
		V _{DS} =0.8 x Rated BV _{DSS} , V _{GS} =10V,TJ=125	-	-	250	А
On-State Drain Current (Note 2)	I _{D(ON)}	V _{DS} >I _{D(ON)} x r _{DS(ON)MAX} , V _{GS} =10V (Figure7)	16	-	-	А
Gate to Source Leakage Current	I _{GSS}	V _{GS} =±20V	-	-	±100	nA
Drain to Source On Resistance (Note2)	r _{DS(ON)}	V _{GS} =10V, I _D =8.9A (Figures 8,9)	-	0.250	0.300	Ω
Forward Transconductance (Note 2)	gfs	V_{DS} =2 x V_{GS} , I_{D} =8.0A (Figure 12)	8.0	10	-	S
Turn-On Delay Time	t _{D(ON)}	V _{DD} =200V, I _D =16A,R _{GS} =6.2Ω, VGS=10V,	-	12	18	ns
Rise Time	tr	RL=12.3 Ω	-	51	77	ns
Turn-Off Delay Time	t _{D(OFF)}	MOSFET Switching Times are Essentially	-	75	110	ns
Fall Time	tf	Independent of Operating Temperature	-	47	71	ns
Total Gate Charge	Qg	V _{GS} =10V, I _D =16A, V _{DS} =0.8 x Rated BV _{DSS} .	-	87	130	nC
(Gate to Source + Gate to Drain)	-	IG (REF) = 1.5mA (Figure 14)				
Gate to Source Charge	Qgs	Gate Charge is Essentially Independent	of -	10	-	nC
Gate to Drain "Miller" Charge	Qgd	Operating Temperature	-	33	-	nC
Input Capacitance	CISS	V _{GS} =0V, V _{DS} =25V, f =1.0MHz (Figure 11)	-	2000	-	pF
Output Capacitance	Coss		-	400	-	pF
Reverse-Transfer Capacitance	C _{RSS}		-	100	-	pF
Internal Drain Inductance	LD	Measured Between the Contact Screw on Header that is Closer to Source and Gate Pins and Center of Die	he	5.0	-	nH
Internal Source Inductance		Measured from the Source Lead, 6mm (0.28in) From Header to Source Bonding Pad	-	12.5	-	nH
Junction to Case	R _{eJC}		-	-	0.70	/W
Junction to Ambient	R _{ØJA}	Free Air Operation	-	-	30	/W

Source to Drain Diode Specifications


PARAMETER	SYMBOL	TEST CONDITIONS	Μ	IN TYF	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	Modified Mosfet	-	-	16	А
Pulse Source to Drain Current (Note3)	I _{SDM}	Symbol Showing the Integral Reverse P-N Junction Diode		-	64	A
Source to Drain Diode Voltage (Note 2)	V _{SD}	T_J =25 , I_{SD} =16A, V_{GS} =0V (Figure	13) -	-	1.6	V
Reverse Recovery Time	t _{rr}	T_J =150 , I _{SD} =15A, dI _{SD} /dt=100A/µ	IS 27	70 -	1300	ns
Reverse Recovered Charge	Q _{RR}	T _J =150 , I _{SD} =15A, dI _{SD} /dt=100A/µ	IS 1.	7 -	8.1	μC

Notes:

2. Pulse Test: Pulse width \leq 300µs, duty cycle \leq 2%.

- 3. Repetitive Rating: Pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
- 4. V_{DD} =40V, starting T_J=25 , L =5.66mH, R_G=50 Ω , peak I_{AS}=15A.

Typical Performance Curves Unless Otherwise Specified

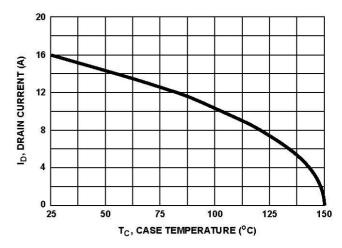


FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

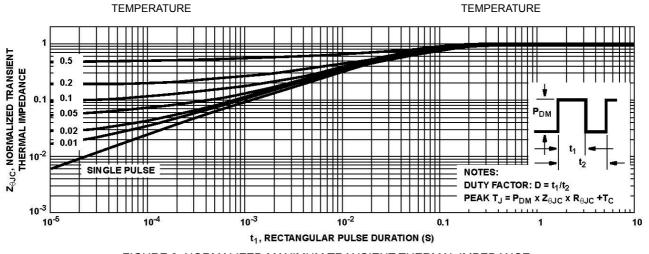
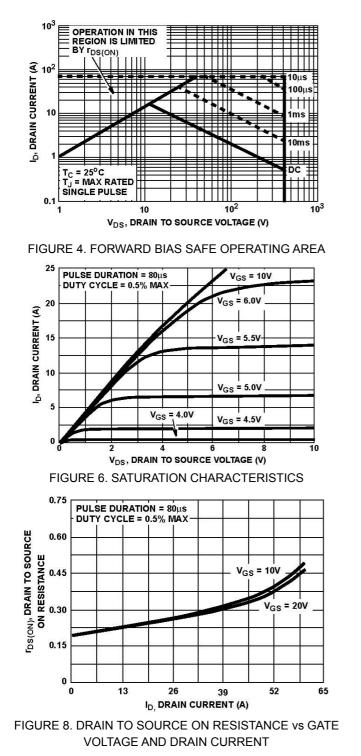
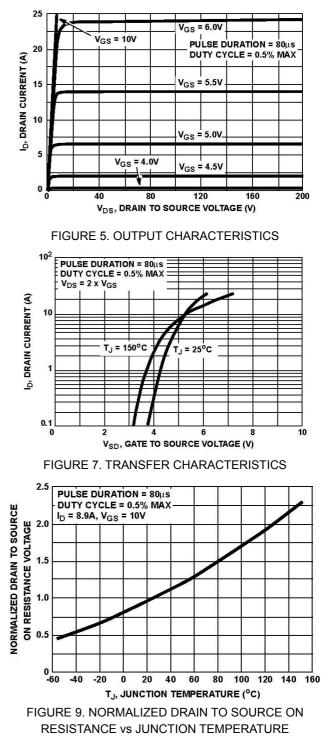
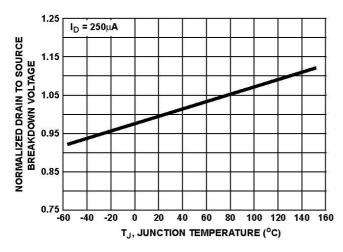
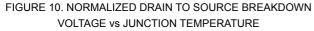




FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE


Typical Performance Curves Unless Otherwise Specified (Continued)



Typical Performance Curves Unless Otherwise Specified (Continued)

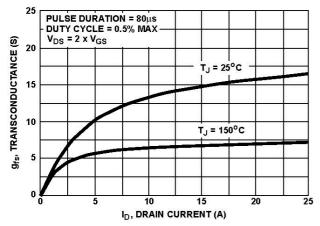


FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT

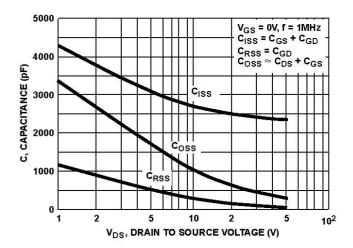
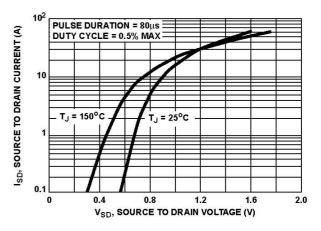



FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

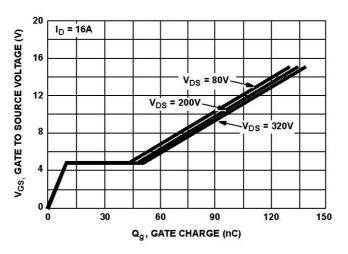


FIGURE 13. SOURCE TO DRAIN DIODE FORWARD VOLTAGE

FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE

Test Circuits and Waveforms

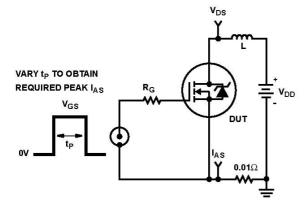


FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT

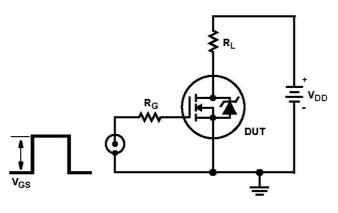


FIGURE 17. SWITCHING TIME TEST CIRCUIT

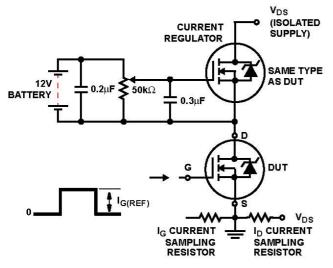


FIGURE 19. GATE CHARGE TEST CIRCUIT

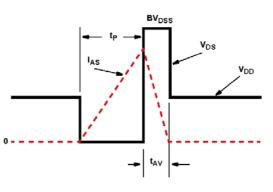
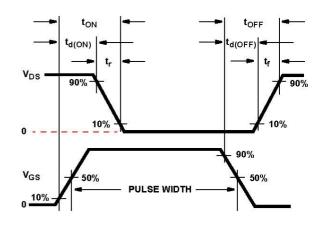
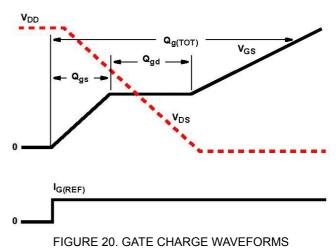




FIGURE 16. UNCLAMPED ENERGY WAVEFORMS

FIGURE 18. RESISTIVE SWITCHING WAVEFORMS

